Interpolatory quadrature formulae with Chebyshev abscissae

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost - Interpolatory Chebyshev Quadrature

The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...

متن کامل

Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions

We evaluate explicitly the integrals ∫ 1 −1 πn(t)/(r ∓ t)dt, |r| = 1, with the πn being any one of the four Chebyshev polynomials of degree n. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing [−1, 1] in its interior.

متن کامل

Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals

This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...

متن کامل

Quadrature formulae for Fourier coefficients

We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Michhelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a func...

متن کامل

Computing rational Gauss-Chebyshev quadrature formulas with complex poles

We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [−1, 1]. This algorithm is based on the derivation of explicit expressions for the Chebyshev (para-)orthogonal rational functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2001

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(00)00672-5